Prices of chemical elements

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

This is a list of prices of chemical elements. Listed here are mainly average market prices for bulk trade of commodities. Data on elements' abundance in Earth's crust is added for comparison.

As of 2020, the most expensive non-synthetic element by both mass and volume is rhodium. It is followed by caesium, iridium and palladium by mass and iridium, gold and platinum by volume. Carbon in the form of diamond can be more expensive than rhodium. Per-kilogram prices of some synthetic radioisotopes range to trillions of dollars.

Chlorine, sulfur and carbon (as coal) are cheapest by mass. Hydrogen, nitrogen, oxygen and chlorine are cheapest by volume at atmospheric pressure.

When there is no public data on the element in its pure form, price of a compound is used, per mass of element contained. This implicitly puts the value of compounds' other constituents, and the cost of extraction of the element, at zero. For elements for which their radiological properties are important, individual isotopes and isomers are listed. The price listing for radioisotopes is not exhaustive.

Z Symbol Name Density[a] (kg/L) Abundance in Earth's crust[b] (mg/kg) Price[5] Year Source Notes
USD/kg USD/L[c]
1 H Hydrogen 0.00008988 1400 1.39 0.000125 2012 DOE Hydrogen[6] Prices of hydrogen produced by distributed steam methane reforming, as predicted by H2A Production Model from United States Department of Energy,[7] assuming price of natural gas of 3 USD/MMBtu (10 USD/MWh; 0.10 USD/m3). Does not include cost of storage and distribution.
1 2H Deuterium 0.0001667[8] 13400 2.23 2020 CIL[9] 99.8% pure compressed deuterium gas, in lot size of 850 L (142 g). Also sold by same supplier in the form of heavy water at price of 3940 USD per kg deuterium.[10]

In 2016 Iran sold 32 tons of heavy water to United States for 1336 USD per kg deuterium.[11]

2 He Helium 0.0001785 0.008 24.0 0.00429 2018 USGS MCS[12] Crude helium sold to non-government users in United States in 2018. In the same year, stockpiles of US government helium were sold on auctions for average price of 0.00989 USD/L.[13]
3 Li Lithium 0.534 20 81.485.6 43.445.7 2020 SMM[14][d] Min. 99% pure.
4 Be Beryllium 1.85 2.8 857 1590 2020 ISE 2020[15][e] Min. 99% pure.
5 B Boron 2.34 10 3.68 8.62 2019 CEIC Data[16][f] In the form of boric acid, price per boron contained. Min. 99% pure.
6 C Carbon 2.267 200 0.122 0.28 2018 EIA Coal[17] In the form of anthracite, price per carbon contained, assuming 90% carbon content. There is a wide variation of price of carbon depending on its form. Lower ranks of coal can be less expensive, for example sub-bituminous coal can cost around 0.038 USD/kg carbon.[17] Graphite flakes can cost around 0.9 USD/kg carbon.[18] Price of synthetic industrial diamond for grinding and polishing can range from 1200 to 13300 USD/kg, while cost per weight of large synthetic diamonds for industrial applications can be on the order of million dollars per kilogram.[19]
7 N Nitrogen 0.0012506 19 0.140 0.000175 2001 Hypertextbook[22] As liquid nitrogen.
8 O Oxygen 0.001429 461000 0.154 0.000220 2001 Hypertextbook[22] As liquid oxygen.
9 F Fluorine 0.001696 585 1.842.16 0.003110.00365 2017 Echemi[23] In the form of anhydrous hydrofluoric acid, price per fluorine contained. Range of prices on Chinese market, week of 1–7 December 2017.
10 Ne Neon 0.0008999 0.005 240 0.21 1999 Ullmann[24] Approximate European price for buying small quantities.
11 Na Sodium 0.971 23600 2.573.43 2.493.33 2020 SMM[25][d] Min 99.7% pure industrial grade sodium.
12 Mg Magnesium 1.738 23300 2.32 4.03 2019 Preismonitor[18][g] Min 99.9% pure.
13 Al Aluminium 2.698 82300 1.79 4.84 2019 Preismonitor[18][g] High-grade primary aluminium, at London Metal Exchange warehouse.
14 Si Silicon 2.3296 282000 1.70 3.97 2019 Preismonitor[18][g] Min. 99.1% pure, max. 0.4% iron, 0.4% aluminium, 0.1% calcium.[26] 10–100 mm.
15 P Phosphorus 1.82 1050 2.69 4.90 2019 CEIC Data[16][f] Min. 99.9% pure yellow phosphorus.
16 S Sulfur 2.067 350 0.0926 0.191 2019 CEIC Data[16][f]
17 Cl Chlorine 0.003214 145 0.082 0.00026 2013 CnAgri[27] As chlorine is manufactured together with sodium hydroxide in chloralkali process, relative demand for one product changes the price for the other. When demand for sodium hydroxide is relatively high, chlorine price can fall to arbitrarily low levels, even to zero.[28]
18 Ar Argon 0.0017837 3.5 0.931 0.00166 2019 UNLV[29] Liquid argon supply contract for University of Nevada, Las Vegas.
19 K Potassium 0.862 20900 12.113.6 10.511.7 2020 SMM[30][d] Min 98.5% pure industrial grade potassium.
20 Ca Calcium 1.54 41500 2.212.35 3.413.63 2020 SMM[31][d] Blocks of 98.5% pure calcium obtained by reduction process.
21 Sc Scandium 2.989 22 3460 10300 2020 ISE 2020[32][h] Min. 99.99% pure.
22 Ti Titanium 4.54 5650 11.111.7 50.553.1 2020 SMM[33][d] Min. 99.6% pure titanium sponge.
23 V Vanadium 6.11 120 357385 21802350 2020 SMM[34][d] Min. 99.5% pure.
24 Cr Chromium 7.15 102 9.40 67.2 2019 Preismonitor[18][g] Min. 99.2% pure.
25 Mn Manganese 7.44 950 1.82 13.6 2019 Preismonitor[18][g] Electrolytic manganese, min. 99.7% pure.
26 Fe Iron 7.874 56300 0.424 3.34 2020 SMM[35][d] L8-10 pig iron. At Tangshan, China.
27 Co Cobalt 8.86 25 32.8 291 2019 Preismonitor[18][g] Spot price. Min. 99.8% pure. At London Metal Exchange warehouse.
28 Ni Nickel 8.912 84 13.9 124 2019 Preismonitor[18][g] Primary nickel. Spot price. Min. 99.8% pure. At London Metal Exchange warehouse.
29 Cu Copper 8.96 60 6.00 53.8 2019 Preismonitor[18][g] Spot price. Grade A.[36] At London Metal Exchange warehouse.
30 Zn Zinc 7.134 70 2.55 18.2 2019 Preismonitor[18][g] Min. 99.995% pure special high grade zinc metal. Spot price. At London Metal Exchange warehouse.
31 Ga Gallium 5.907 19 148 872 2019 Preismonitor[18][g] Min. 99.99% pure. Free on Board China.
32 Ge Germanium 5.323 1.5 9141010 48605390 2020 SMM[37][d] Ingot. 50 Ω/cm.
33 As Arsenic 5.776 1.8 0.9991.31 5.777.58 2020 SMM[38][d] Min. 99.5% pure.
34 Se Selenium 4.809 0.05 21.4 103 2019 Preismonitor[18][g] Selenium powder, min. 99.9% pure.
35 Br Bromine 3.122 2.4 4.39 13.7 2019 CEIC Data[16][f]
36 Kr Krypton 0.003733 1×10−4 290 1.1 1999 Ullmann[24] Approximate European price for buying small quantities.
37 Rb Rubidium 1.532 90 15500 23700 2018 USGS MCS[12] 100 g ampoules of 99.75% pure rubidium metal.
38 Sr Strontium 2.64 370 6.536.68 17.217.6 2019 ISE 2019[39] Min. 99% pure, Ex Works China.
39 Y Yttrium 4.469 33 31.0 139 2019 Preismonitor[18][g] Min. 99% pure, Free on Board China.
40 Zr Zirconium 6.506 165 35.737.1 232241 2020 SMM[40][d] Zirconium sponge, min. 99% pure.
41 Nb Niobium 8.57 20 61.485.6 526734 2020 SMM[41][d] Min. 99.9% pure.
42 Mo Molybdenum 10.22 1.2 40.1 410 2019 Preismonitor[18][g] Min. 99.95% pure.
43 Tc Technetium 11.5 ~ 3×10−9[i] 100000 1200000 2004[j] CRC Handbook[k]
43 99mTc Technetium-99m 11.5 1.9×1012 22×1012 2008 NRC[44] In the form of medical doses of sodium pertechnetate made on-site in technetium-99m generators. Price per technetium contained. Range of prices for medical doses available in the United States. Technetium-99m has half-life of 6 hours, which limits its ability to be directly traded.
44 Ru Ruthenium 12.37 0.001 1040010600 129000131000 2020 SMM[45][d] 99.95% pure.
45 Rh Rhodium 12.41 0.001 147000 1820000 2019 Preismonitor[18][g] 99.95% pure.
46 Pd Palladium 12.02 0.015 49500 595000 2019 Preismonitor[18][g] 99.95% pure. London bullion market afternoon fix. In warehouse.
47 Ag Silver 10.501 0.075 521 5470 2019 Preismonitor[18][g] 99.5% pure. Spot price. At London Metal Exchange warehouse.
48 Cd Cadmium 8.69 0.159 2.73 23.8 2019 Preismonitor[18][g] Ingot, min. 99.99% pure.
49 In Indium 7.31 0.25 167 1220 2019 Preismonitor[18][g] Min. 99.99% pure.
50 Sn Tin 7.287 2.3 18.7 136 2019 Preismonitor[18][g] Min. 99.85% pure. Spot price. At London Metal Exchange warehouse.
51 Sb Antimony 6.685 0.2 5.79 38.7 2019 Preismonitor[18][g] Ingot, min. 99.65% pure.
52 Te Tellurium 6.232 0.001 63.5 396 2019 Preismonitor[18][g] Min. 99.99% pure. Europe.
53 I Iodine 4.93 0.45 35 173 2019 Industrial Minerals[46] Min 99.5% pure. Spot market price on 2 August 2019.
54 Xe Xenon 0.005887 3×10−5 1800 11 1999 Ullmann[24] Approximate European price for buying small quantities.
55 Cs Caesium 1.873 3 61800 116000 2018 USGS MCS[12] 1 g ampoules of 99.8% pure caesium.
56 Ba Barium 3.594 425 0.2460.275 0.8860.990 2016 USGS MYB 2016[47] In the form of chemical-grade barite (barium sulfate) exported from China to United States. Price per barium contained, includes cost, insurance, and freight. Barium sulfate is the primary feedstock for production of barium chemicals.[48]
57 La Lanthanum 6.145 39 4.784.92 29.430.3 2020 SMM[49][d] Min. 99% pure.
58 Ce Cerium 6.77 66.5 4.574.71 30.931.9 2020 SMM[50][d] Min. 99% pure.
59 Pr Praseodymium 6.773 9.2 103 695 2019 Preismonitor[18][g] Min. 99% pure, Free on Board China.
60 Nd Neodymium 7.007 41.5 57.5 403 2019 Preismonitor[18][g] Min. 99% pure, Free on Board China.
61 147Pm Promethium-147 7.26 460000 3400000 2003 Radiochemistry Society[51] From Periodic Table of the Elements published on website of Radiochemistry Society. There is no further information as to source or specifics of this price.
62 Sm Samarium 7.52 7.05 13.9 104 2019 Preismonitor[18][g] Min. 99% pure, Free on Board China.
63 Eu Europium 5.243 2 31.4 165 2020 ISE 2020[32][h] Min. 99.999% pure.
64 Gd Gadolinium 7.895 6.2 28.6 226 2020 ISE 2020[32][h] Min. 99.5% pure.
65 Tb Terbium 8.229 1.2 658 5410 2019 Preismonitor[18][g] Min. 99% pure, Free on Board China.
66 Dy Dysprosium 8.55 5.2 307 2630 2019 Preismonitor[18][g] Min. 99% pure, Free on Board China.
67 Ho Holmium 8.795 1.3 57.1 503 2020 ISE 2020[32][h] Min. 99.5% pure.
68 Er Erbium 9.066 3.5 26.4 240 2020 ISE 2020[32][h] Min. 99.5% pure.
69 Tm Thulium 9.321 0.52 3000 28000 2003 IMAR[52][l] Price quotes from canadian producer, for 1 kg order. 99.5–99.99% purity, Free on Board Vancouver, Canada.
70 Yb Ytterbium 6.965 3.2 17.1 119 2020 ISE 2020[32][h] Min. 99.99% pure.
71 Lu Lutetium 9.84 0.8 643 6330 2020 ISE 2020[32][h] Min. 99.99% pure.
72 Hf Hafnium 13.31 3 900 12000 2017 USGS MCS[12] Unwrought hafnium.
73 Ta Tantalum 16.654 2 298312 49605200 2019 ISE 2019[39] Min. 99.95% pure. Ex Works China.
74 W Tungsten 19.25 1.3 35.3 679 2019 Preismonitor[18][g] Powder, particle size 2–10 µm, 99.7% pure. Free on Board China.
75 Re Rhenium 21.02 7×10−4 30104150 6330087300 2020 SMM[53][d] 99.99% pure.
76 Os Osmium 22.61 0.002 12000 280000 2016 Fastmarkets[m]
77 Ir Iridium 22.56 0.001 5550056200 12500001270000 2020 SMM[56][d] 99.95% pure.
78 Pt Platinum 21.46 0.005 27800 596000 2019 Preismonitor[18][g] 99.95% pure. London bullion market morning fix. In warehouse.
79 Au Gold 19.282 0.004 44800 863000 2019 Preismonitor[18][g] 99.9% pure. Morning London gold fix.
80 Hg Mercury 13.5336 0.085 30.2 409 2017 USGS MCS[12] Average European Union price of 99.99% pure mercury.
81 Tl Thallium 11.85 0.85 4200 49800 2017 USGS MCS[12]
82 Pb Lead 11.342 14 2.00 22.6 2019 Preismonitor[18][g] Min. 99.97% pure. Spot price. At London Metal Exchange warehouse.
83 Bi Bismuth 9.807 0.009 6.36 62.4 2019 Preismonitor[18][g] Refined bismuth, min. 99.99% pure.
84 209Po Polonium-209 9.32 49.2×1012 458×1012 2004[j] CRC Handbook (ORNL)[n]
85 At Astatine 7 3×10−20[i] Not traded. Only under a tenth of microgram of astatine has ever been produced.[42] Most stable isotope has half-life of 8.1 hours.
86 Rn Radon 0.00973 4×10−13[i] Not traded. Used in brachytherapy until 1960s,[57] currently radon is not used commercially.[58]
87 Fr Francium 1.87 ~ 1×10−18[i] Not traded. Only quantities of the order of millions of atoms have been obtained for research.[59] Most stable isotope, 223Fr, has half-life of 22 minutes. Francium has no commercial or medical uses.[58]
88 Ra Radium 5.5 9×10−7[i] Negative price. Radium was historically used in the treatment of cancer, but stopped being used when more effective treatments were introduced. As medical facilities had to pay for its disposal, its price can be considered negative.[60]
89 225Ac Actinium-225 10.07 29×1012 290×1012 2004[j] CRC Handbook (ORNL)[n]
90 Th Thorium 11.72 9.6 287 3360 2010 USGS MYB 2012[61] As 99.9% pure thorium oxide, price per thorium contained. Free on Board port of entry, duty paid.
91 Pa Protactinium 15.37 1.4×10−6[i] No reliable price available. In 1959–1961 Great Britain Atomic Energy Authority produced 125 g of 99.9% pure protactinium at a cost of $500000, giving the cost of 4000000 USD per kg.[42] Periodic Table of Elements at Los Alamos National Laboratory website at one point listed protactinium-231 as available from Oak Ridge National Laboratory at a price of 280000 USD/kg.[62]
92 U Uranium 18.95 2.7 101 1910 2018 EIA Uranium Marketing[63] Mainly as triuranium octoxide, price per uranium contained.
93 Np Neptunium 20.45 ≤ 3×10−12[i] 660000 13500000 2003[j] Pomona[64] Periodic Table published by Pomona College Chemistry Department lists neptunium-237 as available from Oak Ridge National Laboratory at 660 USD/g plus packing costs.
94 239Pu Plutonium-239 19.84 6490000 129000000 2019 DOE OSTI[65] Certified reference material sample in the form of plutonium(IV) oxide, price per plutonium-239 contained.
95 241Am Americium-241 13.69 0 728000 9970000 1998 NWA[66][o] Available from Oak Ridge National Laboratory as reported in Nuclear Weapons FAQ.
95 243Am Americium-243 13.69 0 750000 10300000 2004[j] CRC Handbook (ORNL)[n]
96 244Cm Curium-244 13.51 0 185000000 2.50×109 2004[j] CRC Handbook (ORNL)[n]
96 248Cm Curium-248 13.51 0 160×109 2.16×1012 2004[j] CRC Handbook (ORNL)[n]
97 249Bk Berkelium-249 14.79 0 185×109 2.74×1012 2004[j] CRC Handbook (ORNL)[n]
98 249Cf Californium-249 15.1 0 185×109 2.79×1012 2004[j] CRC Handbook (ORNL)[n]
98 252Cf Californium-252 15.1 0 60.0×109 906×109 2004[j] CRC Handbook (ORNL)[n]
99 Es Einsteinium 8.84 0 Not traded. Only microgram quantities have ever been produced.[42] Most stable known isotope has half-life of 471.7 days.
100 Fm Fermium (9.7) 0 Not traded. Only tracer amounts have ever been produced.[42][67]:13.2.6. Most stable known isotope has half-life of 100.5 days.
101 Md Mendelevium (10.3) 0 Not traded. Only around 106 atoms have been produced in experiments.[67]:13.3.6. Most stable known isotope isotope has half-life of 51 days.
102 No Nobelium (9.9) 0 Not traded. Only around 105 atoms have been produced in experiments.[67]:13.4.6. Most stable known isotope has half-life of 58 minutes.
103 Lr Lawrencium (15.6) 0 Not traded. Only around 1000 atoms have been produced in experiments.[67]:13.5.6. Most stable known isotope has half-life of 11 hours.
104 Rf Rutherfordium (23.2) 0 Not traded. Only a few thousand atoms have been produced in experiments.[42] Most stable known isotope has half-life of 2.5 hours.
105 Db Dubnium (29.3) 0 Not traded. Atoms of dubnium have been prepared experimentally at a rate of at most one per minute.[68] Most stable known isotope has half-life of 29 hours.
106 Sg Seaborgium (35.0) 0 Not traded. Only tens of atoms have been produced in experiments.[69] The most stable known isotope has half-life of 14 minutes.
107 Bh Bohrium (37.1) 0 Not traded. Only tens of atoms have been produced in experiments.[70] Most stable known isotope has half-life of 1 minute.
108 Hs Hassium (40.7) 0 Not traded. Only tens of atoms have been produced in experiments.[70] Most stable known isotope has half-life of 16 seconds.
109 Mt Meitnerium (37.4) 0 Not traded. Only produced in experiments on a per-atom basis.[71] Most stable known isotope has half-life of 8 seconds.
110 Ds Darmstadtium (34.8) 0 Not traded. Only produced in experiments on a per-atom basis.[71] Most stable known isotope has half-life of 9.6 seconds.
111 Rg Roentgenium (28.7) 0 Not traded. Only produced in experiments on a per-atom basis.[71] Most stable known isotope has half-life of 2.1 minutes.
112 Cn Copernicium (14.0) 0 Not traded. Only tens of atoms have been produced in experiments.[70] Most stable known isotope has half-life of 29 seconds.
113 Nh Nihonium (16) 0 Not traded. As of 2015, less than 100 atoms have been produced in experiments.[72] Most stable known isotope has half-life of 8 seconds.
114 Fl Flerovium (14) 0 Not traded. As of 2015, less than 100 atoms have been produced in experiments.[72] Most stable known isotope has half-life of 1.9 seconds.
115 Mc Moscovium (13.5) 0 Not traded. As of 2015, less than 100 atoms have been produced in experiments.[72] Most stable known isotope has half-life of 0.65 seconds.
116 Lv Livermorium (12.9) 0 Not traded. As of 2015, less than 100 atoms have been produced in experiments.[72] Most stable known isotope has half-life of 53 ms.
117 Ts Tennessine (7.2) 0 Not traded. As of 2015, less than 100 atoms have been produced in experiments.[72] Most stable known isotope has half-life of 51 ms.
118 Og Oganesson (5.0) 0 Not traded. As of 2015, less than ten atoms have been produced in experiments.[72] Most stable known isotope has half-life of 0.7 ms.

See also[edit]

Notes[edit]

  1. ^ Density for 0 °C, 101.325 kPa.[1] For individual isotopes except deuterium, density of base element is used. Values in parentheses are theoretical predictions.
  2. ^ Unless otherwise indicated, elements are primordial – they occur naturally, and not through decay.
  3. ^ Price per volume for 0 °C, 101.325 kPa, pure element. For individual isotopes except deuterium, density of base element is used.
  4. ^ a b c d e f g h i j k l m n o p Spot market price range on 3 February 2020.
  5. ^ Market price on 5 February 2020
  6. ^ a b c d Average price in November 2019. Data from China Petroleum and Chemical Industry Federation.
  7. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae Price average for entire year 2019.
  8. ^ a b c d e f g Market price on 4 February 2020
  9. ^ a b c d e f g This element is transient – it occurs only through decay (and in the case of plutonium, also in traces deposited from supernovae onto Earth).
  10. ^ a b c d e f g h i j or earlier
  11. ^ The values reported are present in 85th edition of CRC Handbook of Chemistry and Physics[42] (and possibly earlier) and remain unchanged to at least 97th edition.[43]
  12. ^ Source lists prices of other rare earth elements (some of which are significantly different than the ones presented in table above):
    • lanthanum – 25 USD/kg
    • cerium – 30 USD/kg
    • praseodymium – 70 USD/kg
    • neodymium – 30 USD/kg
    • samarium – 80 USD/kg
    • europium – 1600 USD/kg
    • gadolinium – 78 USD/kg
    • terbium – 630 USD/kg
    • dysprosium – 120 USD/kg
    • holmium – 350 USD/kg
    • erbium – 180 USD/kg
    • thulium – 3000 USD/kg
    • ytterbium – 484 USD/kg
    • lutetium – 4000 USD/kg
    • yttrium – 96 USD/kg
  13. ^ Fastmarkets Price[54] and Chart[55] Creator. Mid-market price from price table. Year of latest price data (2016) read from chart. Archived: table, chart (5, 7, 50, 1200 data points)
  14. ^ a b c d e f g h Available from Oak Ridge National Laboratory as reported in CRC Handbook of Chemistry and Physics. Price does not include packing costs. The values reported are present in Handbook's 85th edition[42] (and possibly earlier) and remain unchanged to at least 97th edition.[43]
  15. ^ This source also lists price of Americium-243 as 180 USD/mg, which is much higher than reported in CRC Handbook of Chemistry and Physics and used in this table.

References[edit]

  1. ^ See: Densities of the elements (data page)
  2. ^ Antweiler, Werner. "Foreign Currency Units per 1 European Euro, 1999-2018" (PDF). PACIFIC Exchange Rate Service. University of British Columbia. Archived (PDF) from the original on 2020-03-28.
  3. ^ a b c Antweiler, Werner. "Database Retrieval System". PACIFIC Exchange Rate Service. University of British Columbia. Archived from the original on 2020-04-17.
  4. ^ "USD / RMB". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  5. ^ Values used for currency conversion:
    • Euro: 1999 – 1.0654 USD/EUR[2]
    • Renminbi: September 2013 – 0.16340 USD/CNY,[3] December 2017 – 0.15159 USD/CNY,[3] November 2019 – 0.14241 USD/CNY,[3] 3 February 2019 – 0.14273 USD/CNY[4]
  6. ^ Dillich, Sara; Ramsden, Todd; Melaina, Marc (19 September 2012). Satyapal, Sunita (ed.). DOE Hydrogen and Fuel Cells Program Record #12024: Hydrogen Production Cost Using Low-Cost Natural Gas (PDF) (Report). United States Department of Energy. p. 5. Archived (PDF) from the original on 2017-02-15.
  7. ^ "DOE Hydrogen and Fuel Cells Program: DOE H2A Production Analysis". Hydrogen & Fuel Cells Program. United States Department of Energy. Archived from the original on 2012-03-06.
  8. ^ "Physical Properties for Deuterium". Air Products & Chemicals. Archived from the original on 2019-08-27.
  9. ^ "DEUTERIUM (D, 99.8%) (D2,99.6%+HD,0.4%)". Cambridge Isotope Laboratories. Archived from the original on 2020-04-16.
  10. ^ "DEUTERIUM OXIDE (D, 99%)". Cambridge Isotope Laboratories. Archived from the original on 2020-04-16.
  11. ^ Stone, Richard (22 April 2016). "U.S. goes shopping in Iran's nuclear bazaar, will buy heavy water for science". Science. doi:10.1126/science.aaf9962. ISSN 0036-8075.
  12. ^ a b c d e f Mineral Commodity Summaries 2019 (Report). United States Geological Survey. 2019. doi:10.3133/70202434. ISBN 978-1-4113-4283-5. Archived from the original on 2020-02-02.
  13. ^ Kornbluth, Phil (31 August 2018). "BLM reaps surprising windfall from FY 2019 Crude Helium Auction". gasworld.
  14. ^ "Lithium Metal". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  15. ^ "Strategic metals prices in February 2020". Institute of Rare Earths and Metals. 5 February 2020. Archived from the original on 2020-02-05.
  16. ^ a b c d "China Petroleum & Chemical Industry Association: Petrochemical Price: Inorganic Chemical Material". CEIC Data. Archived from the original on 2020-02-03.
  17. ^ a b "Coal prices and outlook". Energy Explained. U.S. Energy Information Administration. 12 November 2019. Archived from the original on 2020-03-30.
  18. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af Preismonitor (PDF) (Report) (in German). Federal Institute for Geosciences and Natural Resources. 22 January 2020. Archived (PDF) from the original on 2020-01-25.
  19. ^ Olson, Donald W. (January 2020). Diamond, Industrial. Minerals Yearbook 2016 (Report). I. United States Geological Survey. p. 21.3. doi:10.3133/mybvi. Archived from the original on 2020-03-31.
  20. ^ Salerno, Louis J.; Gaby, J.; Johnson, R.; Kittel, Peter; Marquardt, Eric D. (2002). "Terrestrial Applications of Zero-Boil-Off Cryogen Storage". In Ross, R. G. (ed.). Cryocoolers 11. Kluwer Academic Publishers. p. 810. doi:10.1007/0-306-47112-4_98. ISBN 978-0-306-46567-3.
  21. ^ Fan, Karen (2007). Elert, Glenn (ed.). "Price of Liquid Nitrogen". The Physics Factbook. Archived from the original on 2019-07-23.
  22. ^ a b In Cryocoolers 11,[20] cited in Hypertextbook[21]
  23. ^ "Hydrofluoric Acid Market Remained Largely Stable This Week (Dec 1-7, 2017)". Echemi. 7 December 2017. Archived from the original on 2020-03-31.
  24. ^ a b c Häussinger, Peter; Glatthaar, Reinhard; Rhode, Wilhelm; Kick, Helmut; Benkmann, Christian; Weber, Josef; Wunschel, Hans-Jörg; Stenke, Viktor; Leicht, Edith; Stenger, Hermann (15 March 2001). "Noble Gases". In Elvers, Barbara; et al. (eds.). Ullmann's Encyclopedia of Industrial Chemistry. 24 (7th ed.). Wiley-VCH. sec. 9. doi:10.1002/14356007.a17_485. ISBN 978-3-527-32943-4.
  25. ^ "Sodium". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  26. ^ "Silicon Metal Yunnan (441#)". price.metal.com. Shanghai Metals Market. 6 February 2020. Archived from the original on 2020-02-06.
  27. ^ "Liquid Chlorine Demands Goes Up with Substantial Price Hike". CnAgri. Beijing Orient Agribusiness Consultant. 15 October 2013. Archived from the original on 2020-01-14.
  28. ^ Schmittinger, Peter; Florkiewicz, Thomas; Curlin, L. Calvert; Lüke, Benno; Scannell, Robert; Navin, Thomas; Zelfel, Erich; Bartsch, Rüdiger (15 January 2006). "Chlorine". In Elvers, Barbara; et al. (eds.). Ullmann's Encyclopedia of Industrial Chemistry (release 2008, 7th ed.). Wiley-VCH (published 2008). sec. 15. doi:10.1002/14356007.a06_399.pub2. ISBN 978-3-527-31965-7.
  29. ^ "Agreement Information 6238". University of Nevada, Las Vegas. Archived from the original on 2019-12-21.
  30. ^ "Potassium". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  31. ^ "Calcium 98.5%". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  32. ^ a b c d e f g "Rare earth prices in February 2020". Institute of Rare Earths and Metals. 4 February 2020. Archived from the original on 2020-02-04.
  33. ^ "Titanium Sponge". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  34. ^ "Vanadium". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  35. ^ "Tang Shan(Pig Iron)". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  36. ^ "LME Copper Physical". London Metal Exchange. Archived from the original on 2019-06-23.
  37. ^ "Germanium Ingot". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  38. ^ "Arsenic Metal". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  39. ^ a b "Current prices of strategic metals". Institute of Rare Earths and Metals. July 2019. Archived from the original on 2020-01-14.
  40. ^ "Zirconium Sponge". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  41. ^ "Niobium". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  42. ^ a b c d e f g Hammond, C. R. (2004). "The Elements". In Lide, David R. (ed.). Properties of the Elements and Inorganic Compounds. CRC Handbook of Chemistry and Physics (85th ed.). CRC Press. pp. 4-3–4-36. ISBN 978-0849304859.
  43. ^ a b Hammond, C. R. (2016). "The Elements". In Haynes, W. M.; Lide, David R.; Bruno, Thomas J. (eds.). Properties of the Elements and Inorganic Compounds. CRC Handbook of Chemistry and Physics (97th ed.). CRC Press. pp. 4-3–4-42. ISBN 978-1498754286.
  44. ^ National Research Council (2009). "6. Molybdenum-99/Technetium-99m Production Costs". Medical Isotope Production without Highly Enriched Uranium. Washington, D.C.: The National Academies Press. doi:10.17226/12569. ISBN 978-0-309-13039-4. PMID 25009932.
  45. ^ "Ruthenium". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  46. ^ Greenfield, Michael (2 August 2019). "Iodine prices hold firm although sellers' report higher deal values". Industrial Minerals. Archived from the original on 2019-11-19.
  47. ^ McRae, Michele E. (December 2019). Barite. Minerals Yearbook 2016 (Report). I. United States Geological Survey. p. 9.3. doi:10.3133/mybvi.
  48. ^ Kresse, Robert; Baudis, Ulrich; Jäger, Paul; Riechers, H. Hermann; Wagner, Heinz; Winkler, Jochen; Wolf, Hans Uwe (15 July 2007). "Barium and Barium Compounds". In Elvers, Barbara; et al. (eds.). Ullmann's Encyclopedia of Industrial Chemistry. 4 (7th ed.). Wiley-VCH (published 2011). sec. 1.7. doi:10.1002/14356007.a03_325.pub2. ISBN 978-3-527-32943-4.
  49. ^ "Lanthanum". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  50. ^ "Cerium". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  51. ^ "Promethium". Radiochemistry Society. 2003. Archived from the original on 2018-11-16.
  52. ^ Castor, Stephen B.; Hedrick, James B. (2006). "Rare Earth Elements". In Kogel, Jessica Elzea; Trivedi, Nikhil C.; Barker, James M.; Krukowski, Stanley T. (eds.). Industrial Minerals & Rocks: Commodities, Markets, and Uses (7th ed.). Society for Mining, Metallurgy, and Exploration. p. 785. ISBN 978-0-87335-233-8. OCLC 62805047.
  53. ^ "Rhenium". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  54. ^ "Price Creator". Fastmarkets. Archived from the original on 2020-03-28.
  55. ^ "Chart Creator". Fastmarkets. Archived from the original on 2020-03-28.
  56. ^ "Iridium". price.metal.com. Shanghai Metals Market. 3 February 2020. Archived from the original on 2020-02-03.
  57. ^ "Seeds (ca. 1940s - 1960s)". Oak Ridge Associated Universities. 1999. Archived from the original on 2020-02-25.
  58. ^ a b Keller, Cornelius; Wolf, Walter; Shani, Jashovam (15 October 2011). "Radionuclides, 2. Radioactive Elements and Artificial Radionuclides". In Elvers, Barbara; et al. (eds.). Ullmann's Encyclopedia of Industrial Chemistry. 31 (7th ed.). Wiley-VCH. sec. 1.5. doi:10.1002/14356007.o22_o15. ISBN 978-3-527-32943-4.
  59. ^ Orozco, Luis A. (30 September 2014). Project Closeout Report Francium trapping facility at TRIUMF (Report). United States Department of Energy. doi:10.2172/1214938. OSTI 1214938.
  60. ^ Lubenau, J. O.; Mould, R. F. (2009). "The roller coaster price of radium". International Nuclear Information System (Abstract). IAEA. Archived from the original on 2020-03-31. Retrieved 2020-02-09.
  61. ^ Gambogi, Joseph (August 2016). Thorium. Minerals Yearbook 2012 (Report). I. United States Geological Survey. p. 76.3. doi:10.3133/mybvi.
  62. ^ "Periodic Table of Elements: Protactinium". Los Alamos National Laboratory. Archived from the original on 2011-09-28.
  63. ^ 2018 Uranium Marketing Annual Report (Report). U.S. Energy Information Administration. May 2019. p. 1. Archived from the original on 2020-02-17.
  64. ^ "Neptunium: The Facts". Chemistry Department of Pomona College. Archived from the original on 2003-05-08.
  65. ^ "Plutonium Certified Reference Materials Price Lists". U.S. Department of Energy, Office of Scientific and Technical Information. 20 June 2019.
  66. ^ Sublette, Carey (20 February 1999). "Nuclear Weapons Frequently Asked Questions: Section 6.0 Nuclear Materials". The Nuclear Weapon Archive. Archived from the original on 2020-03-25.
  67. ^ a b c d Silva, Robert J. (2006). "Fermium, Mendelevium, Nobelium, and Lawrencium". In Morss, Lester R.; Edelstein, Norman M.; Fuger, Jean; Katz, Joseph Jacob (eds.). The Chemistry of the Actinide and Transactinide Elements (3 ed.). Dordrecht: Springer Netherlands. pp. 1621–1651. doi:10.1007/1-4020-3598-5_13. ISBN 978-1-4020-3555-5. OCLC 262685616.
  68. ^ Öhrström, Lars (October 2016). "Brief encounters with dubnium". Nature Chemistry. 8 (10): 986. doi:10.1038/nchem.2610. ISSN 1755-4330. PMID 27657876.
  69. ^ Even, J.; Yakushev, A.; Düllmann, C. E.; Haba, H.; Asai, M.; Sato, T. K.; Brand, H.; Di Nitto, A.; Eichler, R.; Fan, F. L.; Hartmann, W. (19 September 2014). "Synthesis and detection of a seaborgium carbonyl complex". Science. 345 (6203): 1493. doi:10.1126/science.1255720. ISSN 0036-8075. PMID 25237098.
  70. ^ a b c Gäggeler, H. W. (2005). "Chemical properties of transactinides" (PDF). The European Physical Journal A. 25 (S1): 583–587. doi:10.1140/epjad/i2005-06-202-2. ISSN 1434-6001.
  71. ^ a b c Le Naour, Claire; Hoffman, Darleane C.; Trubert, Didier (2014). Schädel, Matthias; Shaughnessy, Dawn (eds.). Fundamental and Experimental Aspects of Single Atom-at-a-Time Chemistry. The Chemistry of Superheavy Elements. Springer-Verlag. p. 241. doi:10.1007/978-3-642-37466-1. ISBN 978-3-642-37465-4.
  72. ^ a b c d e f Roberto, J. B.; Alexander, Charles W.; Boll, Rose Ann; Burns, J. D.; Ezold, Julie G.; Felker, Leslie Kevin; Hogle, Susan L.; Rykaczewski, Krzysztof Piotr (December 2015). "Actinide targets for the synthesis of super-heavy elements". Nuclear Physics A. 944. Table 1. Bibcode:2015NuPhA.944...99R. doi:10.1016/j.nuclphysa.2015.06.009. OSTI 1240523.